HTTP 的请求方法

具体有哪些请求方法?

http/1.1规定了以下请求方法(注意,都是大写):

  • GET: 通常用来获取资源
  • HEAD: 获取资源的元信息
  • POST: 提交数据,即上传数据
  • PUT: 修改数据
  • DELETE: 删除资源(几乎用不到)
  • CONNECT: 建立连接隧道,用于代理服务器
  • OPTIONS: 列出可对资源实行的请求方法,用来跨域请求
  • TRACE: 追踪请求-响应的传输路径

GET 和 POST 有什么区别?

首先最直观的是语义上的区别。

而后又有这样一些具体的差别:

  • 从缓存的角度,GET 请求会被浏览器主动缓存下来,留下历史记录,而 POST 默认不会。
  • 从编码的角度,GET 只能进行 URL 编码,只能接收 ASCII 字符,而 POST 没有限制。
  • 从参数的角度,GET 一般放在 URL 中,因此不安全,POST 放在请求体中,更适合传输敏感信息。
  • 从幂等性的角度,GET是幂等的,而POST不是。(幂等表示执行相同的操作,结果也是相同的)
  • 从TCP的角度,GET 请求会把请求报文一次性发出去,而 POST 会分为两个 TCP 数据包,首先发 header 部分,如果服务器响应 100(continue), 然后发 body 部分。(火狐浏览器除外,它的 POST 请求只发一个 TCP 包)

如何理解 URI?

URI, 全称为(Uniform Resource Identifier), 也就是统一资源标识符,它的作用很简单,就是区分互联网上不同的资源。

但是,它并不是我们常说的网址, 网址指的是URL, 实际上URI包含了URN和URL两个部分,由于 URL 过于普及,就默认将 URI 视为 URL 了。

URI 的结构

URI 真正最完整的结构是这样的。

可能你会有疑问,好像跟平时见到的不太一样啊!先别急,我们来一一拆解。

scheme 表示协议名,比如http, https, file等等。后面必须和://连在一起。

user:passwd@ 表示登录主机时的用户信息,不过很不安全,不推荐使用,也不常用。

host:port表示主机名和端口。

path表示请求路径,标记资源所在位置。

query表示查询参数,为key=val这种形式,多个键值对之间用&隔开。

fragment表示 URI 所定位的资源内的一个锚点,浏览器可以根据这个锚点跳转到对应的位置。

举个例子:

1
https://www.baidu.com/s?wd=HTTP&rsv_spt=1

这个 URI 中,https即scheme部分,www.baidu.com为host:port部分(注意,http 和 https 的默认端口分别为80、443),/s为path部分,而wd=HTTP&rsv_spt=1就是query部分。

URI 编码

URI 只能使用ASCII, ASCII 之外的字符是不支持显示的,而且还有一部分符号是界定符,如果不加以处理就会导致解析出错。

因此,URI 引入了编码机制,将所有非 ASCII 码字符和界定符转为十六进制字节值,然后在前面加个%。

如,空格被转义成了%20,三元被转义成了%E4%B8%89%E5%85%83。

如何理解 HTTP 状态码?

RFC 规定 HTTP 的状态码为三位数,被分为五类:

  • 1xx: 表示目前是协议处理的中间状态,还需要后续操作。
  • 2xx: 表示成功状态。
  • 3xx: 重定向状态,资源位置发生变动,需要重新请求。
  • 4xx: 请求报文有误。
  • 5xx: 服务器端发生错误。
    接下来就一一分析这里面具体的状态码。

    1xx

    101 Switching Protocols。在HTTP升级为WebSocket的时候,如果服务器同意变更,就会发送状态码 101。

2xx

200 OK是见得最多的成功状态码。通常在响应体中放有数据。

204 No Content含义与 200 相同,但响应头后没有 body 数据。

206 Partial Content顾名思义,表示部分内容,它的使用场景为 HTTP 分块下载和断电续传,当然也会带上相应的响应头字段Content-Range。

3xx

301 Moved Permanently即永久重定向,对应着302 Found,即临时重定向。

比如你的网站从 HTTP 升级到了 HTTPS 了,以前的站点再也不用了,应当返回301,这个时候浏览器默认会做缓存优化,在第二次访问的时候自动访问重定向的那个地址。

而如果只是暂时不可用,那么直接返回302即可,和301不同的是,浏览器并不会做缓存优化。

304 Not Modified: 当协商缓存命中时会返回这个状态码。详见浏览器缓存

4xx

400 Bad Request: 开发者经常看到一头雾水,只是笼统地提示了一下错误,并不知道哪里出错了。

401 Unauthorized 代表客户端错误,指的是由于缺乏目标资源要求的身份验证凭证,发送的请求未得到满足。

403 Forbidden: 这实际上并不是请求报文出错,而是服务器禁止访问,原因有很多,比如法律禁止、信息敏感。

404 Not Found: 资源未找到,表示没在服务器上找到相应的资源。

405 Method Not Allowed: 请求方法不被服务器端允许。

406 Not Acceptable: 资源无法满足客户端的条件。

408 Request Timeout: 服务器等待了太长时间。

409 Conflict: 多个请求发生了冲突。

413 Request Entity Too Large: 请求体的数据过大。

414 Request-URI Too Long: 请求行里的 URI 太大。

429 Too Many Request: 客户端发送的请求过多。

431 Request Header Fields Too Large请求头的字段内容太大。

5xx

500 Internal Server Error: 仅仅告诉你服务器出错了,出了啥错咱也不知道。

501 Not Implemented: 表示客户端请求的功能还不支持。

502 Bad Gateway: 服务器自身是正常的,但访问的时候出错了,啥错误咱也不知道。

503 Service Unavailable: 表示服务器当前很忙,暂时无法响应服务。

简要概括一下 HTTP 的特点?HTTP 有哪些缺点?

HTTP 的特点概括如下:

  • 灵活可扩展,主要体现在两个方面。一个是语义上的自由,只规定了基本格式,比如空格分隔单词,换行分隔字段,其他的各个部分都没有严格的语法限制。另一个是传输形式的多样性,不仅仅可以传输文本,还能传输图片、视频等任意数据,非常方便。

  • 可靠传输。HTTP 基于 TCP/IP,因此把这一特性继承了下来。这属于 TCP 的特性,不具体介绍了。

  • 请求-应答。也就是一发一收、有来有回, 当然这个请求方和应答方不单单指客户端和服务器之间,如果某台服务器作为代理来连接后端的服务端,那么这台服务器也会扮演请求方的角色。

  • 无状态。这里的状态是指通信过程的上下文信息,而每次 http 请求都是独立、无关的,默认不需要保留状态信息。

HTTP 缺点

无状态

所谓的优点和缺点还是要分场景来看的,对于 HTTP 而言,最具争议的地方在于它的无状态。

在需要长连接的场景中,需要保存大量的上下文信息,以免传输大量重复的信息,那么这时候无状态就是 http 的缺点了。

但与此同时,另外一些应用仅仅只是为了获取一些数据,不需要保存连接上下文信息,无状态反而减少了网络开销,成为了 http 的优点。

明文传输

即协议里的报文(主要指的是头部)不使用二进制数据,而是文本形式。

这当然对于调试提供了便利,但同时也让 HTTP 的报文信息暴露给了外界,给攻击者也提供了便利。WIFI陷阱就是利用 HTTP 明文传输的缺点,诱导你连上热点,然后疯狂抓你所有的流量,从而拿到你的敏感信息。

队头阻塞问题

当 http 开启长连接时,共用一个 TCP 连接,同一时刻只能处理一个请求,那么当前请求耗时过长的情况下,其它的请求只能处于阻塞状态,也就是著名的队头阻塞问题。接下来会有一小节讨论这个问题。

对 Content 系列字段了解多少?

对于Content系列字段的介绍分为四个部分: 数据格式、压缩方式、支持语言和字符集。

数据格式

上一节谈到 HTTP 灵活的特性,它支持非常多的数据格式,那么这么多格式的数据一起到达客户端,客户端怎么知道它的格式呢?

当然,最低效的方式是直接猜,有没有更好的方式呢?直接指定可以吗?

答案是肯定的。不过首先需要介绍一个标准——MIME(Multipurpose Internet Mail Extensions, 多用途互联网邮件扩展)。它首先用在电子邮件系统中,让邮件可以发任意类型的数据,这对于 HTTP 来说也是通用的。

因此,HTTP 从MIME type取了一部分来标记报文 body 部分的数据类型,这些类型体现在Content-Type这个字段,当然这是针对于发送端而言,接收端想要收到特定类型的数据,也可以用Accept字段。

具体而言,这两个字段的取值可以分为下面几类:

  • text: text/html, text/plain, text/css 等
  • image: image/gif, image/jpeg, image/png 等
  • audio/video: audio/mpeg, video/mp4 等
  • application: application/json, application/javascript, application/pdf, application/octet-stream

压缩方式

当然一般这些数据都是会进行编码压缩的,采取什么样的压缩方式就体现在了发送方的Content-Encoding字段上, 同样的,接收什么样的压缩方式体现在了接受方的Accept-Encoding字段上。这个字段的取值有下面几种:

  • gzip: 当今最流行的压缩格式
  • deflate: 另外一种著名的压缩格式
  • br: 一种专门为 HTTP 发明的压缩算法
1
2
3
4
// 发送端
Content-Encoding: gzip
// 接收端
Accept-Encoding: gizp

支持语言

对于发送方而言,还有一个Content-Language字段,在需要实现国际化的方案当中,可以用来指定支持的语言,在接受方对应的字段为Accept-Language。如:

1
2
3
4
// 发送端
Content-Language: zh-CN, zh, en
// 接收端
Accept-Language: zh-CN, zh, en

字符集

最后是一个比较特殊的字段, 在接收端对应为Accept-Charset,指定可以接受的字符集,而在发送端并没有对应的Content-Charset, 而是直接放在了Content-Type中,相信大家也经常看到,以charset属性指定。如:

1
2
3
4
// 发送端
Content-Type: text/html; charset=utf-8
// 接收端
Accept-Charset: charset=utf-8

对于定长和不定长的数据,HTTP 是怎么传输的?

定长包体

对于定长包体而言,发送端在传输的时候一般会带上 Content-Length, 来指明包体的长度。

我们用一个nodejs服务器来模拟一下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
const http = require('http');

const server = http.createServer();

server.on('request', (req, res) => {
if(req.url === '/') {
res.setHeader('Content-Type', 'text/plain');
res.setHeader('Content-Length', 10);
res.write("helloworld");
}
})

server.listen(8081, () => {
console.log("成功启动");
})

启动后访问: localhost:8081。

浏览器中显示如下:

1
helloworld

这是长度正确的情况,那不正确的情况是如何处理的呢?

我们试着把这个长度设置的小一些:

1
res.setHeader('Content-Length', 8);

重启服务,再次访问,现在浏览器中内容如下:

1
hellowor

那后面的ld哪里去了呢?实际上在 http 的响应体中直接被截去了。

然后我们试着将这个长度设置得大一些:

1
res.setHeader('Content-Length', 12);

此时浏览器会显示 网页无法正常运作, 可以看到Content-Length对于 http 传输过程起到了十分关键的作用,如果设置不当可以直接导致传输失败。

不定长包体

上述是针对于定长包体,那么对于不定长包体而言是如何传输的呢?

这里就必须介绍另外一个 http 头部字段了:

1
Transfer-Encoding: chunked

表示分块传输数据,设置这个字段后会自动产生两个效果:

  • Content-Length 字段会被忽略
  • 基于长连接持续推送动态内容
    我们依然以一个实际的例子来模拟分块传输,nodejs 程序如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
const http = require('http');

const server = http.createServer();

server.on('request', (req, res) => {
if(req.url === '/') {
res.setHeader('Content-Type', 'text/html; charset=utf8');
res.setHeader('Content-Length', 10);
res.setHeader('Transfer-Encoding', 'chunked');
res.write("<p>来啦</p>");
setTimeout(() => {
res.write("第一次传输<br/>");
}, 1000);
setTimeout(() => {
res.write("第二次传输");
res.end()
}, 2000);
}
})

server.listen(8009, () => {
console.log("成功启动");
})

访问效果 会依次 按照 在页面 输出 res.write 的内容.

HTTP 中如何处理表单数据的提交?

在 http 中,有两种主要的表单提交的方式,体现在两种不同的Content-Type取值:

  • application/x-www-form-urlencoded
  • multipart/form-data
    由于表单提交一般是POST请求,很少考虑GET,因此这里我们将默认提交的数据放在请求体中。

application/x-www-form-urlencoded

  • 其中的数据会被编码成以&分隔的键值对
  • 字符以URL编码方式编码。
    如:
1
2
// 转换过程: {a: 1, b: 2} -> a=1&b=2 -> 如下(最终形式)
"a%3D1%26b%3D2"

multipart/form-data

  • 请求头中的Content-Type字段会包含boundary,且boundary的值有浏览器默认指定。例: Content-Type: multipart/form-data;boundary=—-WebkitFormBoundaryRRJKeWfHPGrS4LKe。
  • 数据会分为多个部分,每两个部分之间通过分隔符来分隔,每部分表述均有 HTTP 头部描述子包体,如Content-Type,在最后的分隔符会加上–表示结束。

相应的请求体是下面这样:

Content-Disposition: form-data;name=”data1”;
Content-Type: text/plain
data1
—-WebkitFormBoundaryRRJKeWfHPGrS4LKe
Content-Disposition: form-data;name=”data2”;
Content-Type: text/plain
data2
—-WebkitFormBoundaryRRJKeWfHPGrS4LKe–

小结

值得一提的是,multipart/form-data 格式最大的特点在于:每一个表单元素都是独立的资源表述。另外,你可能在写业务的过程中,并没有注意到其中还有boundary的存在,如果你打开抓包工》>具,确实可以看到不同的表单元素被拆分开了,之所以在平时感觉不到,是以为浏览器和 HTTP 给你封装了这一系列操作。而且,在实际的场景中,对于图片等文件的上传,基本采用multipart/form-data而不用application/x-www-form-urlencoded,因为没有必要做 URL 编码,带来巨大耗时的同时也占用了更>多的空间。

如何解决 HTTP 的队头阻塞问题?

什么是 HTTP 队头阻塞?

从前面的小节可以知道,HTTP 传输是基于请求-应答的模式进行的,报文必须是一发一收,但值得注意的是,里面的任务被放在一个任务队列中串行执行,一旦队首的请求处理太慢,就会阻塞后面请求的处理。这就是著名的HTTP队头阻塞问题。

并发连接

对于一个域名允许分配多个长连接,那么相当于增加了任务队列,不至于一个队伍的任务阻塞其它所有任务。在RFC2616规定过客户端最多并发 2 个连接,不过事实上在现在的浏览器标准中,这个上限要多很多,Chrome 中是 6 个。

但其实,即使是提高了并发连接,还是不能满足人们对性能的需求。

域名分片

一个域名不是可以并发 6 个长连接吗?那我就多分几个域名。

比如 content1.baidu.com 、content2.baidu.com。

这样一个baidu.com域名下可以分出非常多的二级域名,而它们都指向同样的一台服务器,能够并发的长连接数更多了,事实上也更好地解决了队头阻塞的问题。

前面说到了 HTTP 是一个无状态的协议,每次 http 请求都是独立、无关的,默认不需要保留状态信息。但有时候需要保存一些状态,怎么办呢?

HTTP 为此引入了 Cookie。Cookie 本质上就是浏览器里面存储的一个很小的文本文件,内部以键值对的方式来存储(在chrome开发者面板的Application这一栏可以看到)。向同一个域名下发送请求,都会携带相同的 Cookie,服务器拿到 Cookie 进行解析,便能拿到客户端的状态。而服务端可以通过响应头中的Set-Cookie字段来对客户端写入Cookie。举例如下:

1
2
3
4
5
// 请求头
Cookie: a=xxx;b=xxx
// 响应头
Set-Cookie: a=xxx
set-Cookie: b=xxx

生存周期

Cookie 的有效期可以通过Expires和Max-Age两个属性来设置。

  • Expires即过期时间
  • Max-Age用的是一段时间间隔,单位是秒,从浏览器收到报文开始计算。
    若 Cookie 过期,则这个 Cookie 会被删除,并不会发送给服务端。

作用域

关于作用域也有两个属性: Domain和path, 给 Cookie 绑定了域名和路径,在发送请求之前,发现域名或者路径和这两个属性不匹配,那么就不会带上 Cookie。值得注意的是,对于路径来说,/表示域名下的任意路径都允许使用 Cookie。

安全相关

如果 cookie 字段带上HttpOnly,那么说明只能通过 HTTP 协议传输,不能通过 JS 访问,这也是预防 XSS 攻击的重要手段。

相应的,对于 CSRF 攻击的预防,也有SameSite属性。

SameSite可以设置为三个值,Strict、Lax和None。

a. 在Strict模式下,浏览器完全禁止第三方请求携带Cookie。比如请求baidu.com网站只能在baidu.com域名当中请求才能携带 Cookie,在其他网站请求都不能。

b. 在Lax模式,就宽松一点了,但是只能在 get 方法提交表单况或者a 标签发送 get 请求的情况下可以携带 Cookie,其他情况均不能。

c. 在None模式下,也就是默认模式,请求会自动携带上 Cookie。

  • 容量缺陷。Cookie 的体积上限只有4KB,只能用来存储少量的信息。

  • 性能缺陷。Cookie 紧跟域名,不管域名下面的某一个地址需不需要这个 Cookie ,请求都会携带上完整的 Cookie,这样随着请求数的增多,其实会造成巨大的性能浪费的,因为请求携带了很多不必要的内容。但可以通过Domain和Path指定作用域来解决。

  • 安全缺陷。由于 Cookie 以纯文本的形式在浏览器和服务器中传递,很容易被非法用户截获,然后进行一系列的篡改,在 Cookie 的有效期内重新发送给服务器,这是相当危险的。另外,在HttpOnly为 false 的情况下,Cookie 信息能直接通过 JS 脚本来读取。

如何理解 HTTP 代理?

我们知道在 HTTP 是基于请求-响应模型的协议,一般由客户端发请求,服务器来进行响应。

当然,也有特殊情况,就是代理服务器的情况。引入代理之后,作为代理的服务器相当于一个中间人的角色,对于客户端而言,表现为服务器进行响应;而对于源服务器,表现为客户端发起请求,具有双重身份。

那代理服务器到底是用来做什么的呢?

功能

  • 负载均衡。客户端的请求只会先到达代理服务器,后面到底有多少源服务器,IP 都是多少,客户端是不知道的。因此,这个代理服务器可以拿到这个请求之后,可以通过特定的算法分发给不同的源服务器,让各台源服务器的负载尽量平均。当然,这样的算法有很多,包括随机算法、轮询、一致性hash、LRU(最近最少使用)等等,不过这些算法并不是本文的重点,大家有兴趣自己可以研究一下。

  • 保障安全。利用心跳机制监控后台的服务器,一旦发现故障机就将其踢出集群。并且对于上下行的数据进行过滤,对非法 IP 限流,这些都是代理服务器的工作。

  • 缓存代理。将内容缓存到代理服务器,使得客户端可以直接从代理服务器获得而不用到源服务器那里。下一节详细拆解。

如何理解 HTTP 缓存及缓存代理?

关于强缓存和协商缓存的内容,我已经在能不能说一说浏览器缓存做了详细分析,小结如下:

首先通过 Cache-Control 验证强缓存是否可用

  • 如果强缓存可用,直接使用
  • 否则进入协商缓存,即发送 HTTP 请求,服务器通过请求头中的If-Modified-Since或者If-None-Match这些条件请求字段检查资源是否更新
    • 若资源更新,返回资源和200状态码
    • 否则,返回304,告诉浏览器直接从缓存获取资源
      这一节我们主要来说说另外一种缓存方式: 代理缓存。

为什么产生代理缓存?

对于源服务器来说,它也是有缓存的,比如Redis, Memcache,但对于 HTTP 缓存来说,如果每次客户端缓存失效都要到源服务器获取,那给源服务器的压力是很大的。

由此引入了缓存代理的机制。让代理服务器接管一部分的服务端HTTP缓存,客户端缓存过期后就近到代理缓存中获取,代理缓存过期了才请求源服务器,这样流量巨大的时候能明显降低源服务器的压力。

那缓存代理究竟是如何做到的呢?

总的来说,缓存代理的控制分为两部分,一部分是源服务器端的控制,一部分是客户端的控制。

源服务器的缓存控制

private 和 public

在源服务器的响应头中,会加上Cache-Control这个字段进行缓存控制字段,那么它的值当中可以加入private或者public表示是否允许代理服务器缓存,前者禁止,后者为允许。

比如对于一些非常私密的数据,如果缓存到代理服务器,别人直接访问代理就可以拿到这些数据,是非常危险的,因此对于这些数据一般是不会允许代理服务器进行缓存的,将响应头部的Cache-Control设为private,而不是public。

proxy-revalidate

must-revalidate的意思是客户端缓存过期就去源服务器获取,而proxy-revalidate则表示代理服务器的缓存过期后到源服务器获取。

s-maxage

s是share的意思,限定了缓存在代理服务器中可以存放多久,和限制客户端缓存时间的max-age并不冲突。

讲了这几个字段,我们不妨来举个小例子,源服务器在响应头中加入这样一个字段:

1
Cache-Control: public, max-age=1000, s-maxage=2000

相当于源服务器说: 我这个响应是允许代理服务器缓存的,客户端缓存过期了到代理中拿,并且在客户端的缓存时间为 1000 秒,在代理服务器中的缓存时间为 2000 s。

客户端的缓存控制

max-stale 和 min-fresh

在客户端的请求头中,可以加入这两个字段,来对代理服务器上的缓存进行宽容和限制操作。比如:

1
max-stale: 5

表示客户端到代理服务器上拿缓存的时候,即使代理缓存过期了也不要紧,只要过期时间在5秒之内,还是可以从代理中获取的。

又比如:

1
min-fresh: 5

表示代理缓存需要一定的新鲜度,不要等到缓存刚好到期再拿,一定要在到期前 5 秒之前的时间拿,否则拿不到。

only-if-cached

这个字段加上后表示客户端只会接受代理缓存,而不会接受源服务器的响应。如果代理缓存无效,则直接返回504(Gateway Timeout)。

以上便是缓存代理的内容,涉及的字段比较多,希望能多多回顾,加深理解。

什么是跨域?浏览器如何拦截响应?如何解决?

在前后端分离的开发模式中,经常会遇到跨域问题,即 Ajax 请求发出去了,服务器也成功响应了,前端就是拿不到这个响应。接下来我们就来好好讨论一下这个问题。

什么是跨域

浏览器遵循同源政策(scheme(协议)、host(主机)和port(端口)都相同则为同源)。非同源站点有这样一些限制:

  • 不能读取和修改对方的 DOM
  • 不读访问对方的 Cookie、IndexDB 和 LocalStorage
  • 限制 XMLHttpRequest 请求。(后面的话题着重围绕这个)

当浏览器向目标 URI 发 Ajax 请求时,只要当前 URL 和目标 URL 不同源,则产生跨域,被称为跨域请求。

跨域请求的响应一般会被浏览器所拦截,注意,是被浏览器拦截,响应其实是成功到达客户端了。

接下来我们来说一说解决跨域问题的几种方案。

CORS

CORS 其实是 W3C 的一个标准,全称是跨域资源共享。它需要浏览器和服务器的共同支持,具体来说,非 IE 和 IE10 以上支持CORS,服务器需要附加特定的响应头,后面具体拆解。不过在弄清楚 CORS 的原理之前,我们需要清楚两个概念: 简单请求和非简单请求。

浏览器根据请求方法和请求头的特定字段,将请求做了一下分类,具体来说规则是这样,凡是满足下面条件的属于简单请求:

请求方法为 GET、POST 或者 HEAD
请求头的取值范围: Accept、Accept-Language、Content-Language、Content-Type(只限于三个值application/x-www-form-urlencoded、multipart/form-data、text/plain)
浏览器画了这样一个圈,在这个圈里面的就是简单请求, 圈外面的就是非简单请求,然后针对这两种不同的请求进行不同的处理。

简单请求

请求发出去之前,浏览器做了什么?

它会自动在请求头当中,添加一个Origin字段,用来说明请求来自哪个源。服务器拿到请求之后,在回应时对应地添加Access-Control-Allow-Origin字段,如果Origin不在这个字段的范围中,那么浏览器就会将响应拦截。

因此,Access-Control-Allow-Origin字段是服务器用来决定浏览器是否拦截这个响应,这是必需的字段。与此同时,其它一些可选的功能性的字段,用来描述如果不会拦截,这些字段将会发挥各自的作用。

Access-Control-Allow-Credentials。这个字段是一个布尔值,表示是否允许发送 Cookie,对于跨域请求,浏览器对这个字段默认值设为 false,而如果需要拿到浏览器的 Cookie,需要添加这个响应头并设为true, 并且在前端也需要设置withCredentials属性:

1
2
let xhr = new XMLHttpRequest();
xhr.withCredentials = true;

Access-Control-Expose-Headers。这个字段是给 XMLHttpRequest 对象赋能,让它不仅可以拿到基本的 6 个响应头字段(包括Cache-Control、Content-Language、Content-Type、Expires、Last-Modified和Pragma), 还能拿到这个字段声明的响应头字段。比如这样设置:

1
Access-Control-Expose-Headers: aaa

那么在前端可以通过 XMLHttpRequest.getResponseHeader(‘aaa’) 拿到 aaa 这个字段的值。

非简单请求

非简单请求相对而言会有些不同,体现在两个方面: 预检请求和响应字段。

我们以 PUT 方法为例。

1
2
3
4
5
var url = 'http://xxx.com';
var xhr = new XMLHttpRequest();
xhr.open('PUT', url, true);
xhr.setRequestHeader('X-Custom-Header', 'xxx');
xhr.send();

当这段代码执行后,首先会发送预检请求。这个预检请求的请求行和请求体是下面这个格式:

1
2
3
4
5
OPTIONS / HTTP/1.1
Origin: 当前地址
Host: xxx.com
Access-Control-Request-Method: PUT
Access-Control-Request-Headers: X-Custom-Header

预检请求的方法是OPTIONS,同时会加上Origin源地址和Host目标地址,这很简单。同时也会加上两个关键的字段:

  • Access-Control-Request-Method, 列出 CORS 请求用到哪个HTTP方法
  • Access-Control-Request-Headers,指定 CORS 请求将要加上什么请求头

这是预检请求。接下来是响应字段,响应字段也分为两部分,一部分是对于预检请求的响应,一部分是对于 CORS 请求的响应。

预检请求的响应。如下面的格式:

1
2
3
4
5
6
7
8
9
HTTP/1.1 200 OK
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: GET, POST, PUT
Access-Control-Allow-Headers: X-Custom-Header
Access-Control-Allow-Credentials: true
Access-Control-Max-Age: 1728000
Content-Type: text/html; charset=utf-8
Content-Encoding: gzip
Content-Length: 0

其中有这样几个关键的响应头字段:

  • Access-Control-Allow-Origin: 表示可以允许请求的源,可以填具体的源名,也可以填*表示允许任意源请求。
  • Access-Control-Allow-Methods: 表示允许的请求方法列表。
  • Access-Control-Allow-Credentials: 简单请求中已经介绍。
  • Access-Control-Allow-Headers: 表示允许发送的请求头字段
  • Access-Control-Max-Age: 预检请求的有效期,在此期间,不用发出另外一条预检请求。
    在预检请求的响应返回后,如果请求不满足响应头的条件,则触发XMLHttpRequest的onerror方法,当然后面真正的CORS请求也不会发出去了。

CORS 请求的响应。绕了这么一大转,到了真正的 CORS 请求就容易多了,现在它和简单请求的情况是一样的。浏览器自动加上Origin字段,服务端响应头返回Access-Control-Allow-Origin。可以参考以上简单请求部分的内容。

JSONP

虽然XMLHttpRequest对象遵循同源政策,但是script标签不一样,它可以通过 src 填上目标地址从而发出 GET 请求,实现跨域请求并拿到响应。这也就是 JSONP 的原理,接下来我们就来封装一个 JSONP:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
const jsonp = ({ url, params, callbackName }) => {
const generateURL = () => {
let dataStr = '';
for(let key in params) {
dataStr += `${key}=${params[key]}&`;
}
dataStr += `callback=${callbackName}`;
return `${url}?${dataStr}`;
};
return new Promise((resolve, reject) => {
// 初始化回调函数名称
callbackName = callbackName || Math.random().toString.replace(',', '');
// 创建 script 元素并加入到当前文档中
let scriptEle = document.createElement('script');
scriptEle.src = generateURL();
document.body.appendChild(scriptEle);
// 绑定到 window 上,为了后面调用
window[callbackName] = (data) => {
resolve(data);
// script 执行完了,成为无用元素,需要清除
document.body.removeChild(scriptEle);
}
});
}

当然在服务端也会有响应的操作, 以 express 为例:

let express = require(‘express’)
let app = express()
app.get(‘/‘, function(req, res) {
let { a, b, callback } = req.query
console.log(a); // 1
console.log(b); // 2
// 注意哦,返回给script标签,浏览器直接把这部分字符串执行
res.end(${callback}('数据包'));
})
app.listen(3000)

前端这样简单地调用一下就好了:

1
2
3
4
5
6
7
8
9
10
jsonp({
url: 'http://localhost:3000',
params: {
a: 1,
b: 2
}
}).then(data => {
// 拿到数据进行处理
console.log(data); // 数据包
})

和CORS相比,JSONP 最大的优势在于兼容性好,IE 低版本不能使用 CORS 但可以使用 JSONP,缺点也很明显,请求方法单一,只支持 GET 请求。

Nginx

Nginx 是一种高性能的反向代理服务器,可以用来轻松解决跨域问题。

what?反向代理?我给你看一张图你就懂了。

正向代理帮助客户端访问客户端自己访问不到的服务器,然后将结果返回给客户端。

反向代理拿到客户端的请求,将请求转发给其他的服务器,主要的场景是维持服务器集群的负载均衡,换句话说,反向代理帮其它的服务器拿到请求,然后选择一个合适的服务器,将请求转交给它。

因此,两者的区别就很明显了,正向代理服务器是帮客户端做事情,而反向代理服务器是帮其它的服务器做事情。

好了,那 Nginx 是如何来解决跨域的呢?

比如说现在客户端的域名为client.com,服务器的域名为server.com,客户端向服务器发送 Ajax 请求,当然会跨域了,那这个时候让 Nginx 登场了,通过下面这个配置:

1
2
3
4
5
6
7
server {
listen 80;
server_name client.com;
location /api {
proxy_pass server.com;
}
}

Nginx 相当于起了一个跳板机,这个跳板机的域名也是client.com,让客户端首先访问 client.com/api,这当然没有跨域,然后 Nginx 服务器作为反向代理,将请求转发给server.com,当响应返回时又将响应给到客户端,这就完成整个跨域请求的过程。