什么是 XSS 攻击?

XSS 全称是 Cross Site Scripting(即跨站脚本),为了和 CSS 区分,故叫它XSS。XSS 攻击是指浏览器中执行恶意脚本(无论是跨域还是同域),从而拿到用户的信息并进行操作。

这些操作一般可以完成下面这些事情:

  • 窃取Cookie。
  • 监听用户行为,比如输入账号密码后直接发送到黑客服务器。
  • 修改 DOM 伪造登录表单。
  • 在页面中生成浮窗广告。
  • 通常情况,XSS 攻击的实现有三种方式——存储型、反射型和文档型。原理都比较简单,先来一一介绍一下。

存储型

存储型,顾名思义就是将恶意脚本存储了起来,确实,存储型的 XSS 将脚本存储到了服务端的数据库,然后在客户端执行这些脚本,从而达到攻击的效果。

常见的场景是留言评论区提交一段脚本代码,如果前后端没有做好转义的工作,那评论内容存到了数据库,在页面渲染过程中直接执行, 相当于执行一段未知逻辑的 JS 代码,是非常恐怖的。这就是存储型的 XSS 攻击。

反射型

反射型XSS指的是恶意脚本作为网络请求的一部分。

最经典就是在请求地址带参数, 这样,在服务器端会拿到参数,然后将内容返回给浏览器端,浏览器将这些内容作为HTML的一部分解析,发现是一个脚本,直接执行,这样就被攻击了。

之所以叫它反射型, 是因为恶意脚本是通过作为网络请求的参数,经过服务器,然后再反射到HTML文档中,执行解析。和存储型不一样的是,服务器并不会存储这些恶意脚本。

文档型

文档型的 XSS 攻击并不会经过服务端,而是作为中间人的角色,在数据传输过程劫持到网络数据包,然后修改里面的 html 文档!

这样的劫持方式包括WIFI路由器劫持或者本地恶意软件等。

防范措施

明白了三种XSS攻击的原理,我们能发现一个共同点: 都是让恶意脚本直接能在浏览器中执行。

那么要防范它,就是要避免这些脚本代码的执行。

为了完成这一点,必须做到一个信念,两个利用。

一个信念

千万不要相信任何用户的输入!

无论是在前端和服务端,都要对用户的输入进行转码或者过滤。

利用 CSP

CSP,即浏览器中的内容安全策略,它的核心思想就是服务器决定浏览器加载哪些资源,具体来说可以完成以下功能:

  • 限制其他域下的资源加载。
  • 禁止向其它域提交数据。
  • 提供上报机制,能帮助我们及时发现 XSS 攻击。
  • 有两种方法可以确保 Cookie 被安全发送,并且不会被意外的参与者或脚本访问:Secure 属性和HttpOnly 属性。

  • 标记为 Secure 的 Cookie 只应通过被 HTTPS 协议加密过的请求发送给服务端,但即便设置了 Secure 标记,敏感信息也不应该通过 Cookie 传输,因为 Cookie 有其固有的不安全性,Secure 标记也无法提供确实的安全保障, 例如,可以访问客户端硬盘的人可以读取它。

  • JavaScript Document.cookie API 无法访问带有 HttpOnly 属性的cookie;此类 Cookie 仅作用于服务器。例如,例如,持久化服务器端会话的 Cookie 不需要对 JavaScript 可用,而应具有 HttpOnly 属性。此预防措施有助于缓解跨站点脚本(XSS)攻击。

CSRF攻击 是什么?

定义:

CSRF(Cross-site request forgery), 即跨站请求伪造,指的是黑客诱导用户点击链接,打开黑客的网站,然后黑客利用用户目前的登录状态发起跨站请求。

举个例子, 你在某个论坛点击了黑客精心挑选的小姐姐图片,你点击后,进入了一个新的页面。

那么恭喜你,被攻击了:)

你可能会比较好奇,怎么突然就被攻击了呢?接下来我们就来拆解一下当你点击了链接之后,黑客在背后做了哪些事情。

可能会做三样事情。列举如下:

自动发 GET 请求

黑客网页里面可能有一段这样的代码:

1
<img src="https://xxx.com/info?user=hhh&count=100"></img>

进入页面后自动发送 get 请求,值得注意的是,这个请求会自动带上关于 xxx.com 的 cookie 信息(这里是假定你已经在 xxx.com 中登录过)。

假如服务器端没有相应的验证机制,它可能认为发请求的是一个正常的用户,因为携带了相应的 cookie,然后进行相应的各种操作,可以是转账汇款以及其他的恶意操作。

自动发 POST 请求

黑客可能自己填了一个表单,写了一段自动提交的脚本。

1
2
3
4
5
<form id='hacker-form' action="https://xxx.com/info" method="POST">
<input type="hidden" name="user" value="hhh" />
<input type="hidden" name="count" value="100" />
</form>
<script>document.getElementById('hacker-form').submit();</script>

同样也会携带相应的用户 cookie 信息,让服务器误以为是一个正常的用户在操作,让各种恶意的操作变为可能。

诱导点击发送 GET 请求

在黑客的网站上,可能会放上一个链接,驱使你来点击:

1
<a href="https://xxx/info?user=hhh&count=100" taget="_blank">点击进入修仙世界</a>

点击后,自动发送 get 请求,接下来和自动发 GET 请求部分同理。

这就是CSRF攻击的原理。和XSS攻击对比,CSRF 攻击并不需要将恶意代码注入用户当前页面的html文档中,而是跳转到新的页面,利用服务器的验证漏洞和用户之前的登录状态来模拟用户进行操作。

防范措施

利用Cookie的SameSite属性

CSRF攻击中重要的一环就是自动发送目标站点下的 Cookie,然后就是这一份 Cookie 模拟了用户的身份。因此在Cookie上面下文章是防范的不二之选。

恰好,在 Cookie 当中有一个关键的字段,可以对请求中 Cookie 的携带作一些限制,这个字段就是SameSite。

SameSite可以设置为三个值,Strict、Lax和None。

  • 在Strict模式下,浏览器完全禁止第三方请求携带Cookie。比如请求baidu.com网站只能在baidu.com域名当中请求才能携带 Cookie,在其他网站请求都不能。

  • 在Lax模式,就宽松一点了,但是只能在 get 方法提交表单况或者a 标签发送 get 请求的情况下可以携带 Cookie,其他情况均不能。

  • 在None模式下,也就是默认模式,请求会自动携带上 Cookie。

验证来源站点

这就需要要用到请求头中的两个字段: Origin和Referer。

其中,Origin只包含域名信息,而Referer包含了具体的 URL 路径。

当然,这两者都是可以伪造的,通过 Ajax 中自定义请求头即可,安全性略差。

CSRF Token

Django作为 Python 的一门后端框架,用它开发过的同学就知道,在它的模板(template)中, 开发表单时,经常会附上这样一行代码:

1
{% csrf_token %}

这就是CSRF Token的典型应用。那它的原理是怎样的呢?

首先,浏览器向服务器发送请求时,服务器生成一个字符串,将其植入到返回的页面中。

然后浏览器如果要发送请求,就必须带上这个字符串,然后服务器来验证是否合法,如果不合法则不予响应。这个字符串也就是CSRF Token,通常第三方站点无法拿到这个 token, 因此也就是被服务器给拒绝

HTTPS为什么让数据传输更安全?

谈到HTTPS, 就不得不谈到与之相对的HTTP。HTTP的特性是明文传输,因此在传输的每一个环节,数据都有可能被第三方窃取或者篡改,具体来说,HTTP 数据经过 TCP 层,然后经过WIFI路由器、运营商和目标服务器,这些环节中都可能被中间人拿到数据并进行篡改,也就是我们常说的中间人攻击。

为了防范这样一类攻击,我们不得已要引入新的加密方案,即 HTTPS。

HTTPS并不是一个新的协议, 而是一个加强版的HTTP。其原理是在HTTP和TCP之间建立了一个中间层,当HTTP和TCP通信时并不是像以前那样直接通信,直接经过了一个中间层进行加密,将加密后的数据包传给TCP, 响应的,TCP必须将数据包解密,才能传给上面的HTTP。这个中间层也叫安全层。安全层的核心就是对数据加解密。

接下来我们就来剖析一下HTTPS的加解密是如何实现的。

对称加密和非对称加密

概念

首先需要理解对称加密和非对称加密的概念,然后讨论两者应用后的效果如何。

对称加密是最简单的方式,指的是加密和解密用的是同样的密钥。

而对于非对称加密,如果有 A、 B 两把密钥,如果用 A 加密过的数据包只能用 B 解密,反之,如果用 B 加密过的数据包只能用 A 解密。

加解密过程

接着我们来谈谈浏览器和服务器进行协商加解密的过程。

首先,浏览器会给服务器发送一个随机数client_random 和一个加密的方法列表。

服务器接收后给浏览器返回另一个随机数server_random和加密方法。

现在,两者拥有三样相同的凭证: client_random、server_random和加密方法。

接着用这个加密方法将两个随机数混合起来生成密钥,这个密钥就是浏览器和服务端通信的暗号。

加解密过程

接着我们来谈谈浏览器和服务器进行协商加解密的过程。

首先,浏览器会给服务器发送一个随机数client_random 和一个加密的方法列表。

服务器接收后给浏览器返回另一个随机数server_random和加密方法。

现在,两者拥有三样相同的凭证: client_random、server_random和加密方法。

接着用这个加密方法将两个随机数混合起来生成密钥,这个密钥就是浏览器和服务端通信的暗号。

各自应用的效果

如果用对称加密的方式,那么第三方可以在中间获取到client_random、server_random和加密方法,由于这个加密方法同时可以解密,所以中间人可以成功对暗号进行解密,拿到数据,很容易就将这种加密方式破解了。

那能不能只用非对称加密呢?理论上是可以的,但实际上非对称加密需要的计算量非常大,对于稍微大一点的数据即使用最快的处理器也非常耗时。后面有机会给大家分享一下 RSA 非对称加密算法的原理,大家就会有更加直观的认识,这里我们先不深究

对称加密和非对称加密的结合

可以发现,对称加密和非对称加密,只用前者会有安全隐患,只用后者性能消耗又太大。那我们能不能把两者结合,保证性能的同时又能保证安全呢?

其实是可以的,演示一下整个流程:

  • 浏览器向服务器发送client_random和加密方法列表。
  • 服务器接收到,返回server_random、加密方法以及公钥。
  • 浏览器接收,接着生成另一个随机数pre_random, 并且用公钥加密,传给服务器。(敲黑板!重点操作!)
  • 服务器用公钥解密这个被加密后的pre_random。
  • 现在浏览器和服务器有三样相同的凭证:client_random、server_random和pre_random。然后两者用相同的加密方法混合这三个随机数,生成最终的密钥。

然后浏览器和服务器尽管用一样的密钥进行通信,即使用对称加密。

这个最终的密钥是很难被中间人拿到的,为什么呢? 因为中间人没有私钥,从而拿不到pre_random,也就无法生成最终的密钥了。

回头比较一下和单纯的使用非对称加密, 这种方式做了什么改进呢?本质上是防止了私钥加密的数据外传。单独使用非对称加密,最大的漏洞在于服务器传数据给浏览器只能用私钥加密,这是危险产生的根源。利用对称和非对称加密结合的方式,就防止了这一点,从而保证了安全。

添加数字证书

尽管通过两者加密方式的结合,能够很好地实现加密传输,但实际上还是存在一些问题。黑客如果采用 DNS 劫持,将目标地址替换成黑客服务器的地址,然后黑客自己造一份公钥和私钥,照样能进行数据传输。而对于浏览器用户而言,他是不知道自己正在访问一个危险的服务器的。

事实上HTTPS在上述结合对称和非对称加密的基础上,又添加了数字证书认证的步骤。其目的就是让服务器证明自己的身份。

传输过程

为了获取这个证书,服务器运营者需要向第三方认证机构获取授权,这个第三方机构也叫CA(Certificate Authority), 认证通过后 CA 会给服务器颁发数字证书。

这个数字证书有两个作用:

  • 服务器向浏览器证明自己的身份。
  • 把公钥传给浏览器。
    这个验证的过程发生在什么时候呢?

当服务器传送server_random、加密方法的时候,顺便会带上数字证书(包含了公钥), 接着浏览器接收之后就会开始验证数字证书。如果验证通过,那么后面的过程照常进行,否则拒绝执行。

现在我们来梳理一下HTTPS最终的加解密过程:

认证过程

浏览器拿到数字证书后,如何来对证书进行认证呢?

首先,会读取证书中的明文内容。CA 进行数字证书的签名时会保存一个 Hash 函数,来这个函数来计算明文内容得到信息A,然后用公钥解密明文内容得到信息B,两份信息做比对,一致则表示认证合法。

当然有时候对于浏览器而言,它不知道哪些 CA 是值得信任的,因此会继续查找 CA 的上级 CA,以同样的信息比对方式验证上级 CA 的合法性。一般根级的 CA 会内置在操作系统当中,当然如果向上找没有找到根级的 CA,那么将被视为不合法。